Power-law decay of the degree-sequence probabilities of multiple random graphs with application to graph isomorphism

نویسندگان

  • Jefferson Elbert Simoes
  • Daniel R. Figueiredo
  • Valmir C. Barbosa
چکیده

We consider events over the probability space generated by the degree sequences of two independent Erdős-Rényi random graphs, and consider an approximation probability space where such degree sequences are deemed to be sequences of i.i.d. random variables. We show that, for any sequence of events with probabilities asymptotically smaller than some power law in the approximation model, the same upper bound also holds in the original model. We accomplish this by extending an approximation framework proposed in a seminal paper by McKay and Wormald. Finally, as an example, we apply the developed framework to bound the probability of having an isomorphism between two independent random graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality for distances in power-law random graphs

We survey the recent work on phase transition and distances in various random graph models with general degree sequences. We focus on inhomogeneous random graphs, the configuration model and affine preferential attachment models, and pay special attention to the setting where these random graphs have a power-law degree sequence. This means that the proportion of vertices with degree k in large ...

متن کامل

Critical behavior in inhomogeneous random graphs

We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. We show that the critical behavior depends sensitively on the properties of the asymptotic degrees. Indeed, when the proportion of vertices with degree at least k is bounded above by k−τ+1 for some τ > 4, the largest critical connected component is ...

متن کامل

Relative n-th non-commuting graphs of finite groups

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

متن کامل

Bayesian inference on random simple graphs with power law degree distributions

We present a model for random simple graphs with power law (i.e., heavy-tailed) degree distributions. To attain this behavior, the edge probabilities in the graph are constructed from Bertoin–Fujita–Roynette–Yor (BFRY) random variables, which have been recently utilized in Bayesian statistics for the construction of power law models in several applications. Our construction readily extends to c...

متن کامل

Eigenvalues of Random Power Law Graphs

Many graphs arising in various information networks exhibit the “power law” behavior – the number of vertices of degree k is proportional to k−β for some positive β. We show that if β > 2.5, the largest eigenvalue of a random power law graph is almost surely (1 + o(1)) √ m where m is the maximum degree. Moreover, the k largest eigenvalues of a random power law graph with exponent β have power l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016